
Virtual Coordinate Based Co-moving Detection in
Wireless Sensor Networks

Wei-Hua Chen†, Guey-Yun Chang†, and Jen-Feng Huang‡
†Dept. of Computer Science & Information Engineering, National Central University, R.O.C.
‡Dept. of Computer Science & Information Engineering, National Taiwan University, R.O.C.

E-mail:gychang@csie.ncu.edu.tw

Abstract—In mobile wireless sensor networks, it is important
to understand the moving pattern of sensor nodes. There are a
lot of application that need sensors nearby to co-work, such as
data centric applications. Thus, knowing the co-moving nodes
will be helpful to these applications. In this paper, we propose
a co-moving sensor nodes detection algorithm based on virtual
coordinate system. We use the geometric property of independent
set to build our virtual coordinate system. The computation cost
of building a virtual coordinate in this way is low and the result is
relative accurate − just a coordinate rotation will it matches true
coordinates. With the aids of virtual coordinate system, we can
find out co-moving sensor node pairs efficiently and no precise
localization scheme needed (for each sensor) in our works.

Index Terms—Co-moving detection, Wireless sensor networks,
Object tracking, Virtual coordinate

I. INTRODUCTION

In mobile wireless sensor networks, sensor nodes might

move arbitrarily or follow some moving pattern. Nearby

sensors move within a distance and toward the similar di-

rection [1], called co-moving sensors, can work together to

achieve some goals that sensors cannot achieve alone. Co-
moving detection can applied to social tracking [2]–[4], wild

animal tracking and data centric applications. For hand-held

computing devices are growing in these years like PDAs and

smart phones, it’s possible to acquire social interaction of

people by the aid of these devices. For wild animals tracking,

if wild animals are equipped with wireless sensors, their

moving pattern can be traced. Understanding the co-moving

relationship can help us discover social activities or family

structures of wild animals. In data centric sensor networks,

queries for the specific type of data can be sent directly to

the corresponding storage nodes instead of flooding it to the

whole network. Therefore, sensing nodes must co-move with

data storage nodes so that the sensed data can be stored.

Co-moving detection is related to object tracking. There

are works about object tracking in wireless sensor networks

[5]–[7]. However, co-moving detection is not equivalent to

object tracking. In tracking problem, the targets’ moving tracks

are recorded or there are some sources moving tower the

targets. In some cases, there are a set of sources tracking

a set of target. If we know the co-moving status of targets

to be traced, we can classify targets into groups by their

moving direction. Therefore, the mobile sources can focus on

a group of targets rather than a single target. This will reduce

track length for sources. Finding co-moving sensor nodes is

obviously an important issue.

Intuitively, we can find co-moving sensors by analyzing

their location information. By recording the location of each

sensor at continuous time point, we can get a trace for each

sensor. However, the cost of acquiring location information

for each node is high. It requires that each node should be

equipped with GPS devices or some accurate localization

algorithms. The process might be time consuming, too. In

mobile environment, the major problem of using location

information in co-moving issue is that every sensor might be

moving. Maintaining the latest location of one or two hop

neighbors is a power consuming task. The communication

cost and computing cost will be high for nodes are moving

all the time. Therefore, it’s not a good approach for finding

co-moving nodes.

Some researches use the analysis of signals received by base

stations (or access points) to discover relationship between

sensors In an environment without any obstacles, we can use

the signal strength to for localization and use the localization

information to discover co-moving relationship. In an indoor

environment with obstacles, there are researches using the

signal pattern caused by obstacles for co-moving detection,

like DECODE [1]. DECODE uses the correlation coefficient

of signals from two mobile nodes to detect co-moving.

In our works, we proposed a virtual coordinate based co-
moving detection algorithm (VCD). Since we concentrate on

co-moving detection, we need only information that can help

us understand the moving pattern of sensors. There is no need

to acquire the actual location of each node, therefore we don’t

need GPS devices for each node nor the accurate localization

schemes which are not cost efficient. In this paper, we exploit

the geometric property of independent set to establish our

virtual coordinates system. Nodes in the independent appear

to be in some regular pattern. The pattern is helpful to

our coordinates assigning scheme. If a sensor node finds

a maximum independent set in its neighborhood, nodes in

the set will cover most of its neighborhood. Since nodes

in the independent set are not neighbors of each other, the

theoretical maximum independent set of size 5 [8] will form

a pentagon in the neighborhood. Therefore the regular pattern

of the nodes’ distribution can be used for virtual coordinate

assigning. We assign each node a level from center of the

coordinate and a location constant, therefore the system is like

a polar coordinate system. Moving nodes can obtain location

constants from its neighbor when they are moving, a well

defined detecting rule using these information can have an

efficient co-moving detection.

II. PRELIMINARIES

A. System model

We assume that every sensor has a unique node id. Sensors

are uniformly distributed in the network. Node N ’s commu-

nication range is called neighborhood of N and nodes in

N ’s neighborhood area neighbors of N . Also, we assume the

connection of nodes are undirected, that is, in a connectivity
graph, an undirected link connection two nodes denotes to

these two nodes can communicate with each other. Every

node broadcasts hello message (i.e., beacon) with node id

periodically. When a hello message arrives at a sensor node,

the node record node id marked in hello message into its

neighbor table.

All sensor nodes are not equipped with GPS system and

sensors can be static or have ability to move. They are

aware of its mobility status. We classify sensor nodes by

their mobility status: static and mobile node. Static nodes
denote nodes which are static. Some static nodes will be

selected as infrastructure nodes (INs) in a coordinate system.

Mobile nodes (MNs) denote nodes that are currently moving.

Initiator is a subset of infrastructure nodes which establish a

virtual coordinate system. Additionally, our work do not need

know the mobility of sensors, hence, our co-moving detection

algorithm can be applied to many different purpose.

B. Problem statement

The goal of co-moving detection problem is to find (h, p)
co-moving for each sensor. Also, (h, p) co-moving define as

below:

Definition 1: Define two sensors to be (h, p) co-moving if

they keep h hops and remain this relationship for p timeslots.

A group of the (h, p) co-moving sensors can communicate

with each other within h hops during p timeslots. Also, a

sensor’s moving direction in the (h, p) co-moving sensors can

the moving direction of the group (of the (h, p) co-moving

sensors). Note that (h, p) co-moving sensors’ direction can

be used to find the mobility of a (social) group. Thus, if

(h, p) co-moving sensors, we can be applied to many different

applications which are mentioned in Section I.

III. VIRTUAL COORDINATE BASED CO-MOVING

DETECTION ALGORITHM

A. Overview

In this section, we propose a virtual coordinate based co-
moving detection algorithm (VCD) to find (h, p) co-moving.

Our co-moving detection algorithm can be divided into two

phases: coordinate assignment phase and co-moving detection
phase. In coordinate assignment phase, initiators (referred to

Section II-A) establish their virtual coordinate systems; nodes

in this system will be assigned a tuple of coordinate (detailed

later). Every node has a probability pi to become an initiator.

Before the initiator start establishing a coordinate system, it

checks that there are no other initiators in its 2 hop neighbor.

Static nodes selected as infrastructure nodes (INs for short)

by initiators or previous level INs. Note that there are several

initiators in a network, each establish its own coordinate

system. If a node is located at the overlap area of two or more

coordinate system established by different initiators, the node

will have more than one coordinates, one for a initiator. In co-

moving detection phase, mobile node (MNs for short) calculate

its moving direction using coordinate information from INs.

A MN can find some co-moving nodes by searching for MNs

with similar moving direction a few hops away. Details of each

procedure are described in III-B and III-C, respectively.

B. Coordinate assignment phase

In this phase, the initiator starts the establishment of co-

ordinate system. Some static nodes are selected as INs of

coordinate system and are assigned a tuple of coordinate.

1) Independent set discovery: Here, we find an indepen-

dent set as INs since this is a compromise of accuracy and

efficiency. Some methods for establishing virtual coordinate

systems requires the information of boundary nodes of the

whole network [8]–[10]. In [10], the system sees boundary

nodes as a circle, and then assigns coordinates starting from

nodes on the circle. This is reasonable since the locations of

boundary nodes form a shape similar to a circle. However,

finding boundary nodes of a network can be a time consuming

job. Instead, we focus on finding nodes in some regular pattern

in a node’s neighborhood. If infrastructure nodes are too

crowded, the accuracy of the coordinate system is low. An

independent set in a node’s neighborhood will be relatively

far from each other. We exploit this feature to establish our

coordinate system. If a virtual coordinate system is well-

defined so that the coordinate can represent related relation

in real location, such coordinate can be used for co-moving

detection. Following, we detail our steps.

A initiator will find an independent and set them as INs.

In an ideal case, an initiator can find an independent set

of maximum size 5 in its neighborhood. The node in such

the set will form a pentagon similar to a regular pentagon.

Also, a maximum independent set means that each node not

in the set must has at least a neighbor in the set. However,

the maximum independent set problem is a NP-hard problem,

so we have an approximation scheme to find a maximum

independent set. When a node decides to become a initiator,

it will broadcast a neighbor information collecting (NIC)

packet to all its neighbors with initiator’s id recorded. When

a static node in initiator’s neighborhood receive the NIC

packet, it will send to the initiator a neighbor information
report (NIR) packet recording its’ neighbor table. After all

nodes in the neighborhood of the initiator have reported their

neighbor information to initiator, initiator will start to find an

independent set from all its neighbors. Ideally, initiator can

find a maximum independent set of size 5 as shown in Fig. 1.

(a) (b)

Fig. 1. Explanation of reason for finding independent set of size 5. (a). Black
node denotes to the initiator. Gray nodes denote to a maximum independent
set of initiator’s neighbor. (b). 6 nodes in initiator’s neighborhood cannot form
an independent set. A regular hexagon is a common case.

Since initiator has all its neighbors’ neighbor table, it can

sort its neighbors by their number of common neighbors

with initiator. Initiator picks the node with smallest number

of common neighbors as a IN I1. Then initiator eliminates

all neighbors of I1 from list, also adjusts the number of

neighbors of each remaining nodes since neighbors of I1 is

no longer exists in the list. After the adjusting, initiator sorts

the remaining node again and picks one node with current

smallest number of common neighbors with initiator. This

process repeats until all neighbors of initiator are eliminated

from list. The nodes picked are not neighbor of each other and

are level 1 INs, referred to Fig. 2.

(a) (b) (c)

Fig. 2. An example of finding independent set. Black node denotes to the
initiator and gray nodes denote to static nodes. Numbers of common neighbors
with initiator are marked on the node. Ii denote to INs selected by initiator, in
the order of i time to be selected. (a) The original status. (b) Initiator selects
the I1 as an IN. The node and all its neighbor will be marked with ”-” and
be eliminated from initiator’s list. Initiator then adjusts other nodes’ numbers
of common neighbors with initiator. This process repeats until all initiator’s
neighbor are marked with ”-”. (c) At the end of the process, I1 to I5 are
selected by initiator as level 1 INs.

The reason for picking the nodes with small number of

neighbors is that by observation such nodes will locate at

the boundary of initiator’s neighborhood, therefore we can

find an independent set with larger size since the overlapped

area of the node and initiator are relatively small. If initiator

finds an independent set of size 5, the distance of nodes in

the set is far and nodes must appear in a form similar to

a regular pentagon. It’s reasonable to select these nodes as

INs in a virtual coordinate system. Note that the approximate

scheme’s time complexity is O(n2) for n denotes to number

of neighbors of a node. It’s relatively low compared with a

NP-hard problem.
2) Location constant assignment: Since initiator has all

neighbor tables of its neighbors, it can know the clockwise

sequence of INs by observing their common neighbors. Here

the initiator picks one IN randomly and assigns it a location

constant 1, then increases the location constant by 2, i.e., 5,

and assigns it to the next node in counter-clockwise order until

all INs are assigned a location constant. An example is shown

in Figure 3. If a initiator fails to find an independent set of size

5, it will then pick nodes with the smallest common neighbor

with nodes in the independent set. Total number of nodes that

are picked as level 1 INs is always 5 therefore INs can form

a shape similar to a regular pentagon.

1

3

5

97

(1,1)

(1,3)

(1,5)

(1,7) (1,9)

Fig. 3. Assign coordinates to INs. The black node denotes to initiator, nodes
with number one it are INs, other gray nodes are static nodes in initiator’s
neighborhood.

Note that the process of finding level 2 INs to level 7 INs

is similar to finding level 1 INs, the only different is the

number of IN to be selected. For example of level 2 INs,

Level 1 INs like the initiator. Level 1 INs collect neighbor

table information of their neighbor. Ideally, a level 1 IN can

find an independent set of size 5 in its neighborhood including

its previous level IN (i.e., initiator). The static nodes set as INs

should spread out in our virtual coordinate system, so level 2

INs selected by level 1 INs cannot locate in the region of

initiator’s (level 0) neighborhood. Also, the distance between

a next level IN and initiator must be greater than distance

between current level IN and initiator. Therefore, in an ideal

case, only 2 nodes in the independent set are qualified to be

INs. For example, referred to Fig. 4, in an ideal case I2 can

find an independent set of size 5: the initiator and other 4

gray nodes connecting to I2, but only 2 located at the top of

the figure are father to initiator than I2, thus only those 2 are

qualified to be next level INs.
From level 1 to 6, each IN selects 1 or 2 nodes according

to rules described above as their next level INs. When a node

is selected as I node, it inherits the location constant from

its’ previous level I node. If a node is selected by 2 previous

level INs, the location constant will be the average value of

those 2 location constants set by different INs. That will be an

even number. If a nodes is selected by IN with even location

constant and IN with odd location constant, the node will still

remain its location constant a even one. For example, if a node

is selected by nodes with location constant 1 and 2, the node

will pick 2 as its location constant. This is because the number

of nodes with location constant in even number is small. This

action will have a balance effect to number of nodes with

different location constant.

Fig. 4. An example of level 2.

After all enough level (at most 7) of INs are selected and

assigned with location constants; each node in this coordinate

system now has at least 1 tuple of virtual coordinate, (η,

ζ), where level η denotes to radial coordinate, and location

constant ζ denotes to angular coordinate. Note that initiator

chooses 5 level 1 INs at 5 different directions and all following

INs have location constant equal to their previous level INs,

the location constants in this coordinate system can represent

a specific direction from initiator. Direction constants also

represent regions in this coordinate system. INs with the

same location constant form an area, so there are at most

10 directions and region in this virtual coordinate system.

Note that there might be several initiators establishing virtual

coordinate system at the same time. The VCD algorithm

allows coordinate systems to overlap, that is, an infrastructure

node (IN) can belong to one or more coordinate systems.

C. Co-moving detection phase

A coordinate system enters co-moving detection phase when

the process of establishing the virtual coordinate system is

over, that is, the level of this system reaches desired level and

all INs are found and are assigned a coordinate. When an static

node is set to be a IN, it will start to broadcast its location
advertisement message (LAM) periodically. All the INs in the

same level will get the message that set them to I node almost

at the same time, and they starts to broadcast their LAM right

after they get the message. To avoid collision of LAM, the

node waits for a constant time before sending hello messages,

where the waiting time is node id × c ms, for c is a constant.

When a mobile node goes across the coordinate system,

it will record the coordinate recorded in LAM sent by INs

into its LAM list. The LAM list is a list of 4-tuple element,

(arrival time, IN id, level, location). A mobile node calculates

its moving direction according to the LAM list while it has

received enough LAM. The mobile node will make pairs of

every elements in the LAM arrive in the most recent period

and elements arrive in previous period. That is, if a mobile

receives 3 LAMs from 3 different INs at the current period and

it receive 2 at the previous period, then the mobile node have

to perform 3×2 = 6 calculations to know the potential moving
direction. Note that if a LAMs of the same region appears in

both 2 timeslots, mobile nodes will ignore the pair since we

can not imply any moving direction from such information, as

shown in Figure 5.

(a) (b)

Fig. 5. Explanation of the elimination of pairs consists of LAM from the
same region.

We might imply that a node is moving toward initiator if it

gets LAMs from different period, same region and decreasing

levels. However, nodes moving in a region also get LAMs

like that, too. In the example shown in Figure 5(b), node v
is moving in direction between 4 and 5. But if we use these

2 LAMs to calculate its moving direction and might get a

location of 6. Therefore, we eliminate the LAMs from the

same region to calculate moving direction. In the example

mentioned before, mobile can have 6 results for the calculation

of moving direction. Then the mobile node takes the average

value of the results as its current moving direction. (The

formula of moving directions are detailed later.)

When a mobile node MN1 wants to find co-moving nodes,

it will have a local flooding of a co-moving request (CREQ)

packet to its h hops moving neighbors. The CREQ packet

records the mobile node’s node id and moving direction. When

a moving neighbor MN2 get CREQ and founds that the

difference between its moving direction and MN1’s moving

direction is smaller than d, it considers itself as a co-moving

node candidate of MN1 and sends a co-moving reply (CREP)

packet back to MN1 for p timeslots, one CREP for a period.

MN1 than calculates co-moving score (Co-S) of for each co-

moving node candidate. The Co-S for a CREP that MN1

receives is defined as follow:

Co-S = (dt − d)× (ht − h), (1)

where dt denotes the maximum acceptable difference of mov-

ing directions of MN1 and MN2, d is the difference between

the moving direction of MN1 and MN2, ht denotes to the

maximum acceptable hop count between MN1 and MN2, h
denotes to the hop count between MN1 and MN2. Note that

the moving direction comes from location constant, since the

location constant is in a cyclic order, moving direction 1 and

10 are adjacent, the difference between moving direction 1 and

10 will be considered as 1. The total co-moving score (TCS)

for a co-moving node candidate is the accumulation of CSs

calculated from CREP of a mobile node that MN1 receives

for p timeslots. The (p+1) timeslots after MN1 floods CREQ,

MN1 sorts its co-moving node candidates by their TCS. The

MN1 then select N nodes with highest TCSs as its co-moving

nodes, and the value of N depends on applications.

Below, we detail the formula of a mobile node’s moving

directions. In Fig. 6, the coordinate system is divided into

10 regions. The location constants 1 to 10 also represent

10 directions in this coordinate system originated from the

initiator. When a mobile node selects a pair of LAM from

two continuous timeslots in LAM list, it will compare levels

and location constants marked in 2 LAMs. It uses level and

location constant marked in the previous LAM as its current

level and current location, whereas level and location constant

marked in later LAM as its new level and new region. Follow-

ing, we explain the process of moving direction calculation in

an example shown in Fig. 6. If the coordinate recorded in LAM

arrives in previous period is (4,1) and coordinate recorded in

current period LAM is (4,2), that means the node goes across

region 1 to 2 and remain a same distance with the initiator. In

this case, we can imply that the node is going by a direction

similar to direction 4, that is, current region plus 3. If the

case is (4,1) and (3,2), the node crosses region 1 and 2 and

is moving toward the initiator. Moving direction is similar to

direction 5, current location plus 4. We use changes of level

and location constant to know where the mobile node is going

to. We list all possible combination of current and new values

that can be used to calculate moving direction below.

moving direction = RC × (PR+ 3 + LC), (2)

where RC denotes to change in region, PR denotes to

previous region number, LC denotes to change in level. Values

of RC and LC are defined as follows:

RC =

⎧⎨
⎩

1, new regin > current region or from region 10 to 1
−1, new regin < current region or from region 1 to 10
0, region remains the same

(3)

RC =

⎧⎨
⎩

1, new level < current level
−1, new level > current level
0, region remains the same

(4)

(a) (b)

Fig. 6. An example of direction calculation. (a). The mobile node V goes
from region 1 to region 2 without level change. (b). V goes from region 1 to
region 2 with level decreases by 1.

Note that location constant increasing means the mobile

node is going in a counter-clockwise order to initiator. The

case includes going from region 10 to 1. Note also that

we don’t use LAMs of the same direction constant as the

references of moving direction because mobile nodes often

receive LAM from INs in the same region but different level.

IV. PERFORMANCE EVALUATION

In this section, we show the performance of our VCD algo-

rithm by simulations. We use ns-2.34 to simulate all activities

in the networks and use nsg [11] to generate scenes. The Sizes

of networks and scenes vary for different simulations. We will

describe all the details in the following sections. The Section

IV-A shows the detection rate of our VCD algorithm. The

Section IV-B shows the relationship of network density and

number of packets.

A. The detection rate of VCD algorithm

In this section, we show the detection rate of VCD. We

define detection rate as the ratio of the number of pairs of

(h, p) co-moving nodes detected by VCD and detected by

brute force, range of h hops and remain this relationship for

p timeslots. In our simulation, h is set to 3 and p is set to

3. There are 300 sensor nodes (including 3 initiators) are

uniformly distributed in the network. The Network density

D is the average number of neighbors of a node. Following,

we simulated different D: 8, 10, 12, 14, 16, 18, where the

range of the scene are about 543×543, 485×485, 443×443,

410×410, 383×383, and 361×361 m2. The communication

range of each sensor is set to 50m. The speed of mobile nodes

is 1 m/s. The detection rate is shown in Fig. 7.

0
10
20
30
40
50
60
70
80
90

100

18 16 14 12 10 8

D
et

ec
tio

n
ra

te
 (%

)

Network density (average numbers of node in neighborhood)

VCD

Fig. 7. Detection rate of VCD.

The Fig. 7 shows that higher D comes with higher detection

rate. Networks with higher density have higher probability to

forward their CREQ and CREP, thus have higher detection

rate. Note that although higher density with higher detection

rates, the detection rates vary in a small amount. For we restrict

the level and size of coordinate system, the number of static

nodes selected as infrastructure nodes in different density don’t

vary a lot. For this reason, nodes in different density network

can have almost the same probability to receive LAM packets.

B. Network density and packet amounts

In Fig. 8, we can see that the average packet number per

node is in a inverse ratio of network density, at most close

to 14, at least close to 8. Since the cost of establishing

a coordinate system and the number of LAMs are not so

different among different scene as shown if Fig. 9, we can

imply that the main cost of VCD is the cost of finding co-

moving nodes, that is, the CREQ packets and the CREP

packets. When D is large, lots of nodes will receive CREQ

from other nodes and forward it when hop count of CREQ is

still smaller than h. Co-moving nodes then will have higher

probability to be found co-moving, thus the number of CREP

also increases in dense network. This is the main reason that

networks with higher density will have high packet number.

If Initiator is located near the boundary, it cannot establish a

full coordinate system at the side of boundary. Also, if there

are a lot of nodes co-moving, the CREQ and CREP will be

forwarded massively.

0

2

4

6

8

10

12

14

16

18

20

18 16 14 12 10 8

A
ve

ra
ge

 p
ac

ke
t n

um
be

r
pe

r
no

de

Density of scene (number of nodes in neighborhood)

VCD

Fig. 8. Relationship of network density and average packet number.

0

2

4

6

8

10

12

14

16

18

20

18 16 14 12 10 8

A
ve

ra
ge

 p
ac

ke
t n

um
be

r
pe

r
no

de

Network Density (number of nodes in neighborhood)

Cost of establishment and advertisment in VCD

Fig. 9. The cost of establishing VCD and advertisement in VCD.

In Fig. 9, we can know that there are only slightly differ-

ences for different networks with different D to establish and

maintain VCD. The level of a coordinate system is restricted

and infrastructure nodes in a coordinate system will send

LAM periodically, the only difference between Ds is the

numbers of nodes that reply the neighbor information collect

(NIC) packets. In dense networks, there are more neighbors

in a nodes neighborhood. When a node sends NIC to its

neighbors, a lot of nodes will respond to this node. Thats why

dense networks have a little bit higher number of packets for

establishing a coordinate system.

V. CONCLUSIONS

In wireless sensor networks, knowing the moving pattern

is important and is crucial for some applications like social

engineering and tracking. Finding co-moving pair of nodes

is not an easy task. Some researches use changes of signals

to imply the moving pattern of mobile nodes, which is not

impractical.

In our work, we propose a co-moving detection algorithm

based on the aid of virtual coordinate system. We exploit

the geometric property of independent set to establish our

virtual coordinate system. By an approximation, we can find

a maximum independent set in a efficient way and then assign

coordinates to nodes. With the help of these coordinates,

a mobile node can derive its moving direction, hence and

find other nodes with the similar moving direction. Network

density and speed of mobile nodes can only affect the result

of detection slightly; therefore we have a robust system for

co-moving detection.

REFERENCES

[1] G. Chandrasekaran, M. A. Ergin, M. Gruteser, R. P. Martin, J. Yang,
and Y. Chen, “Decode: Exploiting shadow fading to detect comoving
wireless devices,” IEEE Transactions on Mobile Computing, vol. 8,
no. 7, 2009.

[2] M. Musolesi, S. Hailes, and C. Mascolo, “An ad hoc mobility model
founded on social network theory,” in ACM/IEEE MSWiM, 2004.

[3] E. M. Daly and M. Haahr, “Social network analysis for information flow
in disconnected delay-tolerant manets,” IEEE Transactions on Mobile
Computing, vol. 8, no. 5, 2009.

[4] W. He, Y. Huangt, K. Nahrstedt, and BoWu, “Message propagation in
ad-hoe-based proximity mobile social networks,” in IEEE PERCOM,
2010.

[5] Z. Zhong, T. Zhu, D. Wang, and T. He, “Tracking with unreliable node
sequences,” in IEEE INFOCOM, 2009.

[6] C.-Y. Lin, W.-C. Peng, and Y.-C. Tseng, “Efficient in-network moving
object tracking in wireless sensor networks,” IEEE Transactions on
Mobile Computing, vol. 5, no. 8, 2006.

[7] H.-W. Tsai, C.-P. Chu, and T.-S. Chen, “Mobile object tracking in
wireless sensor networks,” Computer Communications, vol. 30, no. 8,
2007.

[8] M.J.Tsai, H.Y.Yang, and W. Huang, “Axis-based virtual coordinate
assignment protocol and delivery-guaranteed routing protocol in wireless
sensor networks,” in IEEE INFOCOM, 2007.

[9] C. A., C. S., D. S., and U. A., “Gps free coordinate assignment and
routing in wireless sensor networks,” in IEEE INFOCOM, 2005.

[10] B. Leong, B. Liskov, and R. Morris, “Greedy vrtual coordinates for
geographc routing,” in IEEE ICNP, 2007.

[11] “Nsg: http://sites.google.com/site/pengjungwu/nsg.”
[12] S. C.-H. Huang, P.-J. Wan, C. T. Vu, Y. Li, and F. Yao, “Nearly

constant approximation for data aggregation scheduling in wireless
sensor networks,” in IEEE INFOCOM, 2007.

[13] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and
S. Shenker, “Ght: A geographic hash table for data-centric storage,” in
ACM WSNA, 2002.

[14] T. Watteyne, I. Auge-Blum, M. Dohler, and S. Ubeda, “Dominique
barthel, centroid virtual coordinates - a novel near-shortest path routing
paradigm,” Computer Networks, vol. 53, no. 10, 2009.

[15] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica,
“Geographic routing without location information,” in ACM MOBICOM,
2003.

[16] K. Muthukrishnan, M. Lijding, N. Meratnia, and P. Havinga, “Sensing
motion using spectral and spatial analysis of wlan rssi,” in EuroSSC,
2007.

[17] T. Sohn, A. Varshavsky, A. LaMarca, M. Y. Chen, T. Choudhury,
I. Smith, S. Consolvo, J. Hightower, W. G. Griswold, and E. de Lara,
“Mobility detection using everyday gsm traces,” in IEEE/IFIP UbiComp,
2006.

[18] J. Krumm and E. Horvitz, “Locadio: inferring motion and location from
wi-fi signal strengths,” in MOBIQUITOUS, 2010.

[19] G. Chandrasekaran, M. Ergin, M. Gruteser, R. Martin, J. Yang, and
Y. Chen, “Decode: Detecting co-moving wireless devices,” in IEEE
MASS, 2008.

