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Abstract 
In this paper, we implement a broadcast 

authentication mechanism for the coordinators defined 
in the ZigBee standard [1]. The job of a Zigbee 
coordinator is to management a Zigbee network which 
usually consists of a large number of wireless sensors. A 
coordinator has the privilege to decide which device 
could stay in the network and which device should leave 
and thus it plays an important role in the network. In the 
original Zigbee standard, it supports basic data 
encryption / decryption abilities based on AES-CCM 
mechanism [3]. It also provides a basic set of security 
functions such as key management and key distribution. 
However, the original security in Zigbee lacks of the 
ability to perform secure broadcasting. In this case, a 
malicious node in the network would have a chance to 
forge a malign broadcast message and hurt the network. 
To overcome this, we propose a mechanism to add a 
modified one-way signature in the original broadcast 
frame for authentication. Through the help of our 
mechanism, we can enhance the security level of ZigBee. 
This enhancement is also vital to any application which 
needs to use broadcasts as a means to transmit its global 
commands. 

 
 

1. Introduction 
 
ZigBee/IEEE 802.15.4 is a wireless communication 

protocol defined for wireless sensor networks. In the 
physical layer, it uses DSSS (Direct Sequence Spread 
Spectrum), and supports 868 MHz, 915 MHz and 2.4 
GHz radio frequency with up to 20kbps, 40kbps and 
250kbps raw data rate respectively. It also supports 
different kinds of network topologies, including 
point-to-point, mesh and star networks. It is a low-cost, v 
low power consumption, two-way, wireless 
communications standard. Solutions adopting ZigBee 
can be embedded in consumer electronics, home and 
building automation, industrial controls, PC peripherals, 
medical sensor applications, toys and games.  

Although the Zigbee standard has already been 
opened to the public, it is still incomplete in many 
aspects. For example, it doesn’t support broadcast 
authentication. This means, if there is an invader existing 
in the network, it can forge a malicious message and 
perform spoofing attack easily. According to the original 
standard, the ZigBee coordinator is responsible for 
network formation, operation channel selection, key 
dispatching, data routing, and the management of the 
entire network. Since the ZigBee coordinator is crucial 
to the network, it is no doubt that we have to protect its 
packets from being attacked by a malicious node. And 
one of the most important things is to protect its 
broadcast messages. 

As we mentioned before, Zigbee doesn’t support 
broadcast authentication. To reinforce this, we adapt a 
one-way signature which comprises the following steps. 
First, the coordinator distributes a public key to every 
node. Second, when the coordinator wants to send a 
packet, it will first generate a signature with the payload, 
and then transmit it to the destination. Third, when other 
nodes receive the broadcast packet, they will perform 
signature verification and make sure the data is valid. Of 
course, this process is also protected by the AES-CCM 
defined in ZigBee. So the whole operation is secure and 
we don’t need to afraid that someone listens in the radio 
channel.  

 
2. Broadcast authentication algorithm 

 
Our broadcast authentication algorithm was inspired 

by two previous works: HORS [4] and Merkle Hash 
Tree [8] [9] [10]. HORS [4] is a one-time signature 
scheme using one way function. It was proposed by 
Leonid Reyzin and Natan Reyzin in 2002. In HORS, it 
includes three phases: Key Generation, Signing, and 
Verifying. Merkle Hash Tree is a binary tree constructed 
from leaves. It can reduce storage requirement. In the 
following section, we will give a brief introduction to 
both of them.  

 



2 

2.1. HORS schemes 
 
HORS [4] is a one-time signature scheme which 

improves BiBa [7] scheme. The name “HORS” comes 
from  “Hash to Obtain Random Subset”. The complete 
scheme is illustrated in Figure 1. The advantages of 
HORS including extremely efficient signing, one time 
evaluation of the cryptographic hash function, efficient 
verifying, and requiring one evaluation of the hash 
function in addition to k evaluations of the one-way 
function f. HORS also requires only one call to the hash 
function H. In addition, a small adjusting in its 
parameters will only results will not affect its security 
level significantly [7]. 

In our approach, we also use HORS scheme to sign 
data packets. When applying in the ZigBee network, the 
coordinator needs to generate a private key and a public 
key. After the key generation, the coordinator sends its 
public key to every node. After this, when the 
coordinator needs to transmit important messages, the 
coordinator can encode them with a signature. And when 
child nodes receive a packet, they should perform the 
Verifying procedure. 

In HORS, we only need one key to sign every 
packet. But the draw back is that the security strength 

decreases in an inverse proportion of signing times with 
an identical key. As a result, we assume that a malicious 
node obtains signature on r messages of its choice, and 
then it tries to forge a signature on any new message m 
of its choice. We can calculate the probability that the 
adversary is able to do so without inverting the one-way 
function f. It is quite easy to see that this probability is 
no more than (rk/t)k for each invocation of Hash, i.e., the 
probability that after rk elements of T are fixed, k 
elements chosen at random are a subset of them. In other 
words, we get k(logt – logk – logr) bits of security. Thus, 
when we use k = 16, t = 1024 and r = 1, then the security 
level is 2-96 (A smaller value corresponds to a higher 
level of security). But after four signatures are given, the 
probability of forgery is equal to 2-64. This shows the 
security level will decrease as the times of signature 
increases. In order to solve this problem, we use 
re-keying mechanism to reset the security level (to its 
original level).In the later section, we will discuss how to 
select the parameters which is suitable to the ZigBee 
protocol. For more information about HORS, please 
refer to related documents. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. HORS one-time signature scheme 
Parameter f is a one-way function and Hash is a hash function. Both f and Hash may be implemented using a standard 
hash function, such as SHA-1 or RIPEMD-160. Suggested parameter values are l = 80, k = 16 and t = 1024, or l = 80, k 
= 20 and t = 256. 

 
 

Key Generation 
Input: Parameters l, k, t 

Generate t random l-bit strings s1, s2, … , st 

Let vi = f(si) for 1 ≤ i ≤ t 
Output: PK = (k, v1, v2, ... , vt) and SK = (k, s1, s2, … , st) 

 
Signing 

Input: Message m and secret key SK = (k, s1, s2, … , st) 
Let h = Hash(m) 
Split h into k substrings h1, h2,…, hk, of length log2 t bits each 
Interpret each hj as an integer ij for 1 ≤ j ≤ k 

Output: σ = (si1 , si2 , ... , sik ) 
 
Verifying 

Input: Message m, signature σ = (s'1, s'2, … , s'k), and public key PK = (k, v1, v2, … , vt) 
Let h = Hash(m) 
Split into k substrings h1, h2, … , hk, of length log2 t bits each 
Interpret each hj as an integer ij for 1 ≤ j ≤ k 

Output: “accept” if for each j, 1 ≤ j ≤ k, f(s'j) = vij ; “reject” otherwise 
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2.2. Merkle Hash Tree 

 
Intuitively, a one way function F is a function which 

is easy to compute its output value but hard to use its 
output to compute its input. Through the help of this kind 
of functions, we can encode a large input into a smaller 
output.  

Merkle hash tree [8] [9] [10] is a popular hash 
function. We can use it as a one-way hash function to 
speed up our authentication process. In a Merkle hash 
tree, it grows from leave nodes. The main purpose we 
use Merkle hash tree as a one way function is to 
authenticate signatures easily and faster. Given a vector 
of data items Y = Y1, Y2,…Yn, we can quickly 
authenticate a randomly chosen Yi which only has 
modest memory requirements as shown in Figure 2. 

To authenticate Yi, we can apply the “divide and 
conquer” technique. Function H(i,j,Y) is defined as 
follows [9] :  

 
1.) H(i,i,Y) = F(Yi) 
2.) H(i,j,Y) = F(<H(i,(i+j-1)/2,Y), H((i+j+1)/2,j,Y)>) 
 
To begin with, we randomly generate each Yi for 

secret and evaluate leaves by definition 1. For example, 
H(5,5,Y) = F(Y5). Next, we construct a complete binary 
tree by definition 2. Each internal node will be computed 
from its children. Using this method, only log2n 
transmissions are required. A sender will send a secret 
data Yi and an authentication path to a receiver. For 
example, when a sender A wants to send a packet to a 
receiver B, besides original data, A sends additional data 
Y1, H(2,2,Y), H(3,4,Y), H(5,8,Y) to B. We assume A 
already constructed a Merkle hash tree on local memory 
and had sent the tree root as public key to every node. 
Now B knows Y1, so it can compute H(1,1,Y). Also, B 
knows H(1,1,Y) and H(2,2,Y), so it can compute 
H(1,2,Y). And trivially, B knows H(1,2,Y) and H(3,4,Y), 
it can compute H(1,4,Y). Repeat the process, finally B 
can compute H(1,8,Y) and compare it with the tree root 
received before to authenticate this packet. 

Since A reveals each Yi (maybe used before) in every 
outgoing packet, the security level decreases in every 
signing. For this reason, we should construct a new 
Merkle hash tree periodically. On the other hand, when 
we have enough memory space, we should always 
pre-compute all authentication paths for saving all the 
intermediate computations. Nevertheless, it’s a trade-off 
between performance efficiency and memory cost. 

 
2.3. An Improved One-time signature approach 

 
We use a scheme that combines HORS and Merkle 

hash tree as a one-time signature [5] [11]. The sender 

generates the private key and public key. The private 
Key consists of t random numbers called private balls. 
We use private balls to construct a Merkle hash tree, and 
make root a public key (As shown in Figure 3.). 

 
Figure 2. Merkle Hash Tree 
We will choose some private balls Y1, Y2, …, Yn as private 
key. It constructs from leaves by a hash function. Each 
internal node is computed by its children. The root will be 
a public key. 
 

We generalize our scheme by first constructing many 
small Merkle hash trees of height h that hold 2h private 
balls. The public key contains the root nodes of all the 
Merkle hash trees, and thus reduces the key size by a 
factor of 2h.  

 
In the following sections, we will explain the detailed 

steps of our mechanism. All the parameters we need are 
summarized in Table 1. The proposed scheme also has 
three phases as same as HORS; they are Key generation, 
Signature generation and Signature verification. 
 

 
Figure 3. Key generation procedure 



4 

Table 1. System Parameters 
h cost of computing a hash function 
t number of private balls 
k number of signature balls 
h1 size of private ball’s identity 
fl size of a public ball 
d number of public balls 
l size of a ball (bits) 
r number of messages one key pair can sign 

 
2.3.1. Key generation 
 

In our proposed scheme, we separate a Merkle hash 
tree into small ones to reduce the overhead results from 
added signature. For example, we can separate a big 
Merkle hash tree which consists of 15 nodes into two 
smaller Merkle trees each consists of 7 nodes. The 
number of public balls d can also be generated by Merkle 
trees. Separated public balls are merged into a single 
public key. We should first define the number of private 
balls t, and the size of a ball is l in bits. Next, we define 
value of d and we have to decide number of signature 
balls k. These parameters will influence each other. The 
complete procedure of key generation is presented in 
Figure 4. 

 

 
Figure 4. Key generation algorithm 
 
2.3.2. Signature generation 
 

To sign a message m, we need first to compute h = 
H(m). Then, we separate the hash value h into k 
substrings h1, h2, …, hk, and interpret each hj as an 
integer ij for 1 ≤ j≤ k. We use these integers as indexes 
of private balls. We pick k private balls and use them, 
along with their associated authentication paths, as the 
signature of this message m. This is presented in Figure 
5. 

 
Figure 5. Key generation algorithm 
 
2.3.3. Signature verification 
 

When a receiver obtains a broadcast message, it has 
to verify it. First, the receiver should compute h = H(m). 
Then, the receiver separates h into k pieces as the same 
as key generation. And the receiver tries to use signature 
that contains some private balls and corresponding 
authentication paths to compute hash tree root. The 
receiver checks every authentication paths and finally 
compares tree hash root and public key. Third, if all are 
valid, then output verified. We present signature 
verification procedure in Figure 6. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 6. Signature verification algorithm 
 
3. Implementation 

 
In this paper, we implement our mechanism on 

ZigBee protocol stack, and see if there is any problem or 
bottleneck. ZigBee is based on IEEE 802.15.4 which 
defines a low-rate wireless personal area network. From 
the network’s view, 802.15.4 belongs to PHY / MAC 
layer, and ZigBee contains NWK layer and all 
application layers above them. ZigBee supports simple 
security called AES-CCM* [1]. It’s a symmetric-key 
security system. CCM* is a generic combined encryption 
and authentication block cipher mode. Each layer is 
responsible their own security by applying CCM*. The 

KEY GENERATION 
Input: parameters t, k, d, l 

Output: key pair 
Private Key Kpri = (s1, s2, … , st) 
Public Key Kpub = (v1, v2, … , vd) 
1. Randomly generate t l-bit random numbers(s1, 

s2, … , st) 
2. Construct Merkle tree from leaves, vi is the root 

of every Merkle tree 
3. Distribute public key 

SIGNATURE GENERATION 
Input: message m and Kpri 
Output: signature σ = (ai1 , ai2 , ... , aik ),where ai = 
(si,api) (ap is the authentication path of the ball) 
1. Compute the hash h = H(m) 
2. Split h into k pieces (h1, h2, …, hk) 
3. Interpret each hj as an integer ij, with 1 ≤ j ≤ k 

SIGNATURE VERIFICATION 
Input: message m, signature σ, and Kpub 
Output: {true, false} 
1. Check if m is in current sequence period 
2. Compute the hash h = H(m) 

Split h into k piece pieces (h1,h2,…,hk) of length ln t 
bits each Interpret each hj as an integer ij, with 1≤ j ≤ k
Compute TNj = ij/(t/d) 
Check ij with pairs (i, TN, H(AP)) 
If index ij already exists, 
    check if H(APj) = H(AP) 
Else check that each H(APj)≠ H(AP) є TNj 

3. Use Merkle tree to verify balls 
If (TreeHash(rj, APj) = PTNj 
    then output true; 
Else output false; 
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length of an 802.15.4/ZigBee packet is maximum 128 
bytes. It contains very short payload. In other words, an 
802.15.4/ZigBee packet can’t contain too long signature. 
It limits our implementation. The signature length of this 
mechanism contains “k private balls” and their 
authentication paths, i.e., 

 
SIGSIZE = BALLSIZE * HEIGHT * k 

 
We assume that we have 16 private balls and each 

ball length is 2 bytes, and we have 4 public balls. That 
means we have 4 small trees, and each tree has Height = 
3 and contains 4 leaves. We present it in Figure 7. Thus 
the size of signature is 2 * 3 * 4 = 24 (bytes). Although it 
doesn’t seem to long, it has taken great proportion of 
packet. Get rid of frame header and some extra 
information, the length that can be used is turned into 
less than 30 bytes. 
 

 
Figure 7. Implementation settings 

 
This is a critical issue; because the security strength 

will be reduced with a shorter signature. The length of 
the signature presents a probability which can be 
randomly guessed. If we want a higher level of security, 
we must increase the length of stamped signature. But on 
the other hand, this will result in a shorter payload. So we 
need to find a balance between them. Now, please recall 
that the probability of forgery is 

 
P = (rk/t)k 

 
It means that the security level will be decreased 

when the number of outgoing packets increases. 
Applying this formula, our settings of the experiment are 
k = 4, t = 16. When we send the packet at first time, P = 
(1*4/16)4 = 2-8. And after four signatures are given, the 
probability becomes (4*4/16)4 = 1. Unfortunately, it 
doesn’t seem very secure. Nonetheless, if we increase 
value of t, the length of the signature will be so long such 
that it can’t be filled in a single ZigBee payload. As a 
result, this is not feasible. In the next section, we’ll start 
to implement our mechanism and try to find a solution. 

 
3.1. Hardware description 

 
We select Chipcon CC2420DBK [12] as our 

operating platform (Figure 8.). It contains a RF chip, 
MCU, 2 buttons, one joystick, a RS-232 port and a 
temperature sensor. The MCU used is an AVR Atmega 
128L from Atmel. This controller has 128 KB of Flash 
program memory, 4KB of SRAM data memory and 4KB 
of non-volatile EEPROM data memory. For a sensor 
system requirement, it meets the condition.  

A JTAG ICE connector is provided for programming 
the AVR without using the serial port. The power supply 
section contains two voltage regulators: a 3.3 V regulator 
for use by the microcontroller and the I/O pins of the 
CC2420. So we usually use a DC as our main power. It 
also contains 4 LED; we can use these LEDs to debug 
easily. There are 2 buttons, one for functionality, and the 
other for reset. A joystick offers four directions and one 
click for functionalities. With this, we can design more 
complex operations. In actual situation, we select one 
board as the coordinator, and four boards as end-devices. 
And the topology of the network is star. 
 

 
Figure 8. CC2420DB Demo board [12] 
 
3.2. ZigBee stack IZAP 

 
Institute for information industry (III) has been 

developing ZigBee stack for years. We have completed a 
ZigBee protocol library corresponding to Zigbee 
standard version 1.0. The library we developed is called 
III ZigBee Advanced Platform (IZAP) protocol stack. It 
passed Zigbee compliant platform (ZCP) certificate in 
late 2005. Since IZAP implements the whole ZigBee 
spec, it contains basic security. In ZigBee protocol, the 
ZigBee coordinator will form a network first, and other 
nodes start to join. In the procedure of joining, the 
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coordinator decides if a node is allowed to join or not. If 
the coordinator allows this node to join, it will dispatch a 
key called “network key” to that node. Only after 
receiving network key do the nodes can transmit their 
packets. And all transmissions are protected by 
AES-CCM*. The sender encrypts transmitting packets 
and the receiver decrypts them.  

 
3.3. System Implementation  

 
In the ZigBee spec, it describes a hash function called 

MMO hash (Matyas-Meyer-Oseas). It is based on AES 
and it’s a block cipher with fixed length 16 bytes. We 
also link IZAP library to support more complex 
applications. 

As we said that before, we only have limited space in 
the data payload. To overcome this, we came up a 
different approach. We first fragment a single message in 
to a number of packets in the sender side. And then, we 
reorganize these packets and verify them in a single run. 
In the original ZigBee spec, it doesn’t describe how to 
fragment packets. But we can refer some methods from 
other network protocols. (For example, IEEE 802.3.) We 
apply a simple fragment mechanism on the original 
protocol. That is to cut original data into several fixed 
length packets and to add additional indexes to each of 
them. Since we know the probability of forgery is related 
to r, t, and k. If we extend t, we will get more high 
security. So we reset system parameters. Let each ball 
size = 1 bytes, t = 64, k = 4. Then we have four trees that 
each tree contains 16 leaves and height = 5. After 
changing parameters, the length of signature becomes 

 
SIGSIZE = 1 * 5 * 4 = 20 (bytes) 
 

And probability of forgery becomes 
 

P = (1*4/64)4 = 2-16 (at first time) 
 

We slightly modify original design. The receiver 
collects many times and does verifying once. That means 
we need a simple authentication path transmitting 
scheduler. We transmit private balls and some (not all) of 
authentication paths. Please recall that a Merkle hash tree 
presents every private ball’s authentication path. Thus, 
there are some duplicate authentication paths. For 
example, if we send private ball Y1, then it’s 
authentication path is H(2,2,Y), H(3,4,Y), H(5,8,Y). If 
we send private ball Y2, then it’s authentication path is 
H(1,1,Y), H(3,4,Y), H(5,8,Y). Thus H(3,4,Y) and 
H(5,8,Y) are duplicate.  

Now, we can extend our signature to a higher degree 
of security. Typically, we send half of original 
authentication paths. And remained authentication paths 
will store in a queue and wait for being sent in the next 

transmission. Although this results in a longer stamped 
signature, we can increases the security level. The 
drawback of this approach is that we need to collect all 
the verification information. In this case, it is no longer a 
one-time signature, and we also need to consider the 
issues of time and possible loses of the intermediate 
packets.  

Now, we try to find a suitable solution for the ZigBee 
protocol. Suppose that each ball size l decides the 
security strength against a brute-force attack. Although 
HORS recommends l = 80, we don’t have enough space 
in a single payload to satisfy it. So we select l = 16. 
Though it seems very short, we can combine re-keying 
scheme to recover this drawback. We list all possible 
parameter settings on a table, and try to find a suited 
setting. They are presented in table 2. The parameter t 
means the numbers of private ball, and k means selected 
private ball as described before. The parameter r means 
that we sign maximum r times, usually satisfies (rk/t) = 
1/2 that presents the security strength decreases by 
increasing r. The parameter security level presents the 
security strength of this setting. The parameter TH means 
each Merkle hash tree height. AP # is the number of 
authentication paths of one private ball. SIGSIZE is the 
size of the signature. Only with 2 AP means that every 
sending and each private ball only contains two 
authentication paths. Only with 3 AP has the same 
meaning. 

We have two constraints of our solution. First, we 
don’t want our signature length more than 40 bytes. In 
this case, we only send two authentication path (AP) or 
three authentication path corresponding to a private ball 
on each transmission. If we select k private balls, there 
are also 2k or 3k authentication paths. So the size of 
signature with 3 ap can be computed as:  

 
2 (bytes) * (1(private ball) + 3(ap)) * k 
 
Second, we wish we have a certain degree security 

level at least more than 20, and we want a bigger value r 
that we can use this signature more times.  

So, finally, we can know that the best setting is t = 
1024, k = 4, r = 128, security level = 32, tree height = 9, 
original AP # followed a private ball = 8, and we choose 
only with 3 AP. By these settings, we get a signature with 
32 bytes. But this modified scheme needs to change 
slightly. Because every receiver needs to collect enough 
authentication paths to verify receiving signatures, they 
need more memory space to buffer data and they can’t 
deal receiving data immediately. If the sender doesn’t 
have any data to send, it also need to send some dummy 
data or remained authentication paths to let other nodes 
verifying remained signature. In our scheme, original AP 
# = 8, and each private ball follows only with 3 AP. That 
is, at first, the receiver needs at least 3 packets to collect 
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enough AP to verify. By time passing, the receiver needs 
fewer and fewer AP to verify.  

We can add a re-keying scheme to our mechanism. 
After r times transmitting, the sender completes to send 
remained authentication paths. Then the sender decides 
to change a new key and transmit it to every node. 
During updating key, the sender can’t send any broadcast. 
The new key also needs to be protected by broadcast 
authentication. 

 

3.4. Analysis 
 
In this section, we analyze the degree of security and 

the required size of transmitting payload of our choice. 
We set a private ball size = 2 bytes (16-bits). So we can 
defend 2-16 brute force attack for guessing each private 
ball. And the probability of forgery = (rk/t)k, that means 
we have p = (4/1024)4 = 2-32, and after 128 sending, it 
becomes p = (4*128/1024)4 = 2-4. The security strength 
decreases by r increasing. That’s why we need to use 
re-keying mechanism.

 
Table 2. parameters analysis 

 
 
If we apply this settings we will produce a 32-bytes 

signature. As described before, the payload length of 
ZigBee packet is 128-bytes. Now we eliminate the 
header (about 30-bytes), the additional data (about 
20-bytes) for ZigBee security, the signature added 
(32-bytes), we only have about 40-bytes left to use for 
payload. This is illustrated in Figure 9. 

 

 

Figure 9. A ZigBee packet structure that applies 
our scheme 

 
4. Application 

 
In a ZigBee network, the coordinator (sender) plays 

an important role at any time. Imaging a scenario, a 
home security system, where the coordinator controls a 
security center. And one of its job is to manage other 
nodes (receiver) to open or close the door lock. When the 
coordinator wants to update all passing password, it can 
apply our mechanism to broadcast the message. And 
during the updating period, all the nodes which control 
door locks don’t let anyone go in until the update 
completes.  
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5. Conclusion 
 
In this paper, we adapt the concepts from HORS and 

Merkle hash tree. We adjust them to fulfill the secure 
requirements of a ZigBee network. In Zigbee, the sizes of 
payloads are limited to 80 bytes, so we need to separate 
our signature into several parts in order to maintain its 
security level. In our mechanism, we send some of the 
authentication paths each time, so we need more than one 
time to verify a signature. As a consequence, we need 
additional queue to store related authentication paths and 
related data on the sender and the receivers. On the other 
hand, while we lose the advantages of one-time signature, 
we can still maintain the security level to an acceptable 
degree.   

We also use a re-keying scheme in our approach. 
After we use r signatures, we change a new key. The 
sender should send all the authentication paths left and 
broadcast a new key to every node to get a refresh the 
network. If other nodes have enough storage, they can 
support complex scheme to distinguish which packet 
using which key. The original ZigBee spec already has a 
basic set of security design. It supports an encryption / 
decryption algorithm based on AES computing. Only 
nodes joining the network, they get a key to secure all 
outgoing and incoming packets. Although it can defend 
external attack, it can’t protect malicious attack inside. 
However, our approach can enhance the original security 
mechanism and resist malicious broadcast messages from 
an internal invader or a compromised node. 

There are several choices of parameters in our 
mechanism. All of them are listed in table 2. These 
parameters can influence security level and signature 
length. We try to find a suitable setting for ZigBee and 
finally we choose set # 17. Of course, the settings can be 
adjusted anytime to suit a real environment. Just 
remember that changing these settings will result in a 
different security level and may shorten the length of a 
data payload in advance. 
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