
1

Implementation of a Broadcast Authentication Mechanism in ZigBee

Ji-Tsong Shieh, Li-chun Ko
Networks and Multimedia Institute, Institute for Information Industry

6FL., 218,Tun-Hwa S. Rd., Sec. 2, Taipei, 106, Taiwan, R.O.C.
{sjt,lcko}@iii.org.tw

Abstract
In this paper, we implement a broadcast

authentication mechanism for the coordinators defined
in the ZigBee standard [1]. The job of a Zigbee
coordinator is to management a Zigbee network which
usually consists of a large number of wireless sensors. A
coordinator has the privilege to decide which device
could stay in the network and which device should leave
and thus it plays an important role in the network. In the
original Zigbee standard, it supports basic data
encryption / decryption abilities based on AES-CCM
mechanism [3]. It also provides a basic set of security
functions such as key management and key distribution.
However, the original security in Zigbee lacks of the
ability to perform secure broadcasting. In this case, a
malicious node in the network would have a chance to
forge a malign broadcast message and hurt the network.
To overcome this, we propose a mechanism to add a
modified one-way signature in the original broadcast
frame for authentication. Through the help of our
mechanism, we can enhance the security level of ZigBee.
This enhancement is also vital to any application which
needs to use broadcasts as a means to transmit its global
commands.

1. Introduction

ZigBee/IEEE 802.15.4 is a wireless communication

protocol defined for wireless sensor networks. In the
physical layer, it uses DSSS (Direct Sequence Spread
Spectrum), and supports 868 MHz, 915 MHz and 2.4
GHz radio frequency with up to 20kbps, 40kbps and
250kbps raw data rate respectively. It also supports
different kinds of network topologies, including
point-to-point, mesh and star networks. It is a low-cost, v
low power consumption, two-way, wireless
communications standard. Solutions adopting ZigBee
can be embedded in consumer electronics, home and
building automation, industrial controls, PC peripherals,
medical sensor applications, toys and games.

Although the Zigbee standard has already been
opened to the public, it is still incomplete in many
aspects. For example, it doesn’t support broadcast
authentication. This means, if there is an invader existing
in the network, it can forge a malicious message and
perform spoofing attack easily. According to the original
standard, the ZigBee coordinator is responsible for
network formation, operation channel selection, key
dispatching, data routing, and the management of the
entire network. Since the ZigBee coordinator is crucial
to the network, it is no doubt that we have to protect its
packets from being attacked by a malicious node. And
one of the most important things is to protect its
broadcast messages.

As we mentioned before, Zigbee doesn’t support
broadcast authentication. To reinforce this, we adapt a
one-way signature which comprises the following steps.
First, the coordinator distributes a public key to every
node. Second, when the coordinator wants to send a
packet, it will first generate a signature with the payload,
and then transmit it to the destination. Third, when other
nodes receive the broadcast packet, they will perform
signature verification and make sure the data is valid. Of
course, this process is also protected by the AES-CCM
defined in ZigBee. So the whole operation is secure and
we don’t need to afraid that someone listens in the radio
channel.

2. Broadcast authentication algorithm

Our broadcast authentication algorithm was inspired

by two previous works: HORS [4] and Merkle Hash
Tree [8] [9] [10]. HORS [4] is a one-time signature
scheme using one way function. It was proposed by
Leonid Reyzin and Natan Reyzin in 2002. In HORS, it
includes three phases: Key Generation, Signing, and
Verifying. Merkle Hash Tree is a binary tree constructed
from leaves. It can reduce storage requirement. In the
following section, we will give a brief introduction to
both of them.

2

2.1. HORS schemes

HORS [4] is a one-time signature scheme which

improves BiBa [7] scheme. The name “HORS” comes
from “Hash to Obtain Random Subset”. The complete
scheme is illustrated in Figure 1. The advantages of
HORS including extremely efficient signing, one time
evaluation of the cryptographic hash function, efficient
verifying, and requiring one evaluation of the hash
function in addition to k evaluations of the one-way
function f. HORS also requires only one call to the hash
function H. In addition, a small adjusting in its
parameters will only results will not affect its security
level significantly [7].

In our approach, we also use HORS scheme to sign
data packets. When applying in the ZigBee network, the
coordinator needs to generate a private key and a public
key. After the key generation, the coordinator sends its
public key to every node. After this, when the
coordinator needs to transmit important messages, the
coordinator can encode them with a signature. And when
child nodes receive a packet, they should perform the
Verifying procedure.

In HORS, we only need one key to sign every
packet. But the draw back is that the security strength

decreases in an inverse proportion of signing times with
an identical key. As a result, we assume that a malicious
node obtains signature on r messages of its choice, and
then it tries to forge a signature on any new message m
of its choice. We can calculate the probability that the
adversary is able to do so without inverting the one-way
function f. It is quite easy to see that this probability is
no more than (rk/t)k for each invocation of Hash, i.e., the
probability that after rk elements of T are fixed, k
elements chosen at random are a subset of them. In other
words, we get k(logt – logk – logr) bits of security. Thus,
when we use k = 16, t = 1024 and r = 1, then the security
level is 2-96 (A smaller value corresponds to a higher
level of security). But after four signatures are given, the
probability of forgery is equal to 2-64. This shows the
security level will decrease as the times of signature
increases. In order to solve this problem, we use
re-keying mechanism to reset the security level (to its
original level).In the later section, we will discuss how to
select the parameters which is suitable to the ZigBee
protocol. For more information about HORS, please
refer to related documents.

Figure 1. HORS one-time signature scheme
Parameter f is a one-way function and Hash is a hash function. Both f and Hash may be implemented using a standard
hash function, such as SHA-1 or RIPEMD-160. Suggested parameter values are l = 80, k = 16 and t = 1024, or l = 80, k
= 20 and t = 256.

Key Generation
Input: Parameters l, k, t

Generate t random l-bit strings s1, s2, … , st

Let vi = f(si) for 1 ≤ i ≤ t
Output: PK = (k, v1, v2, ... , vt) and SK = (k, s1, s2, … , st)

Signing

Input: Message m and secret key SK = (k, s1, s2, … , st)
Let h = Hash(m)
Split h into k substrings h1, h2,…, hk, of length log2 t bits each
Interpret each hj as an integer ij for 1 ≤ j ≤ k

Output: σ = (si1 , si2 , ... , sik)

Verifying

Input: Message m, signature σ = (s'1, s'2, … , s'k), and public key PK = (k, v1, v2, … , vt)
Let h = Hash(m)
Split into k substrings h1, h2, … , hk, of length log2 t bits each
Interpret each hj as an integer ij for 1 ≤ j ≤ k

Output: “accept” if for each j, 1 ≤ j ≤ k, f(s'j) = vij ; “reject” otherwise

3

2.2. Merkle Hash Tree

Intuitively, a one way function F is a function which

is easy to compute its output value but hard to use its
output to compute its input. Through the help of this kind
of functions, we can encode a large input into a smaller
output.

Merkle hash tree [8] [9] [10] is a popular hash
function. We can use it as a one-way hash function to
speed up our authentication process. In a Merkle hash
tree, it grows from leave nodes. The main purpose we
use Merkle hash tree as a one way function is to
authenticate signatures easily and faster. Given a vector
of data items Y = Y1, Y2,…Yn, we can quickly
authenticate a randomly chosen Yi which only has
modest memory requirements as shown in Figure 2.

To authenticate Yi, we can apply the “divide and
conquer” technique. Function H(i,j,Y) is defined as
follows [9] :

1.) H(i,i,Y) = F(Yi)
2.) H(i,j,Y) = F(<H(i,(i+j-1)/2,Y), H((i+j+1)/2,j,Y)>)

To begin with, we randomly generate each Yi for

secret and evaluate leaves by definition 1. For example,
H(5,5,Y) = F(Y5). Next, we construct a complete binary
tree by definition 2. Each internal node will be computed
from its children. Using this method, only log2n
transmissions are required. A sender will send a secret
data Yi and an authentication path to a receiver. For
example, when a sender A wants to send a packet to a
receiver B, besides original data, A sends additional data
Y1, H(2,2,Y), H(3,4,Y), H(5,8,Y) to B. We assume A
already constructed a Merkle hash tree on local memory
and had sent the tree root as public key to every node.
Now B knows Y1, so it can compute H(1,1,Y). Also, B
knows H(1,1,Y) and H(2,2,Y), so it can compute
H(1,2,Y). And trivially, B knows H(1,2,Y) and H(3,4,Y),
it can compute H(1,4,Y). Repeat the process, finally B
can compute H(1,8,Y) and compare it with the tree root
received before to authenticate this packet.

Since A reveals each Yi (maybe used before) in every
outgoing packet, the security level decreases in every
signing. For this reason, we should construct a new
Merkle hash tree periodically. On the other hand, when
we have enough memory space, we should always
pre-compute all authentication paths for saving all the
intermediate computations. Nevertheless, it’s a trade-off
between performance efficiency and memory cost.

2.3. An Improved One-time signature approach

We use a scheme that combines HORS and Merkle

hash tree as a one-time signature [5] [11]. The sender

generates the private key and public key. The private
Key consists of t random numbers called private balls.
We use private balls to construct a Merkle hash tree, and
make root a public key (As shown in Figure 3.).

Figure 2. Merkle Hash Tree
We will choose some private balls Y1, Y2, …, Yn as private
key. It constructs from leaves by a hash function. Each
internal node is computed by its children. The root will be
a public key.

We generalize our scheme by first constructing many
small Merkle hash trees of height h that hold 2h private
balls. The public key contains the root nodes of all the
Merkle hash trees, and thus reduces the key size by a
factor of 2h.

In the following sections, we will explain the detailed

steps of our mechanism. All the parameters we need are
summarized in Table 1. The proposed scheme also has
three phases as same as HORS; they are Key generation,
Signature generation and Signature verification.

Figure 3. Key generation procedure

4

Table 1. System Parameters
h cost of computing a hash function
t number of private balls
k number of signature balls
h1 size of private ball’s identity
fl size of a public ball
d number of public balls
l size of a ball (bits)
r number of messages one key pair can sign

2.3.1. Key generation

In our proposed scheme, we separate a Merkle hash
tree into small ones to reduce the overhead results from
added signature. For example, we can separate a big
Merkle hash tree which consists of 15 nodes into two
smaller Merkle trees each consists of 7 nodes. The
number of public balls d can also be generated by Merkle
trees. Separated public balls are merged into a single
public key. We should first define the number of private
balls t, and the size of a ball is l in bits. Next, we define
value of d and we have to decide number of signature
balls k. These parameters will influence each other. The
complete procedure of key generation is presented in
Figure 4.

Figure 4. Key generation algorithm

2.3.2. Signature generation

To sign a message m, we need first to compute h =
H(m). Then, we separate the hash value h into k
substrings h1, h2, …, hk, and interpret each hj as an
integer ij for 1 ≤ j≤ k. We use these integers as indexes
of private balls. We pick k private balls and use them,
along with their associated authentication paths, as the
signature of this message m. This is presented in Figure
5.

Figure 5. Key generation algorithm

2.3.3. Signature verification

When a receiver obtains a broadcast message, it has
to verify it. First, the receiver should compute h = H(m).
Then, the receiver separates h into k pieces as the same
as key generation. And the receiver tries to use signature
that contains some private balls and corresponding
authentication paths to compute hash tree root. The
receiver checks every authentication paths and finally
compares tree hash root and public key. Third, if all are
valid, then output verified. We present signature
verification procedure in Figure 6.

Figure 6. Signature verification algorithm

3. Implementation

In this paper, we implement our mechanism on

ZigBee protocol stack, and see if there is any problem or
bottleneck. ZigBee is based on IEEE 802.15.4 which
defines a low-rate wireless personal area network. From
the network’s view, 802.15.4 belongs to PHY / MAC
layer, and ZigBee contains NWK layer and all
application layers above them. ZigBee supports simple
security called AES-CCM* [1]. It’s a symmetric-key
security system. CCM* is a generic combined encryption
and authentication block cipher mode. Each layer is
responsible their own security by applying CCM*. The

KEY GENERATION
Input: parameters t, k, d, l

Output: key pair
Private Key Kpri = (s1, s2, … , st)
Public Key Kpub = (v1, v2, … , vd)
1. Randomly generate t l-bit random numbers(s1,

s2, … , st)
2. Construct Merkle tree from leaves, vi is the root

of every Merkle tree
3. Distribute public key

SIGNATURE GENERATION
Input: message m and Kpri
Output: signature σ = (ai1 , ai2 , ... , aik),where ai =
(si,api) (ap is the authentication path of the ball)
1. Compute the hash h = H(m)
2. Split h into k pieces (h1, h2, …, hk)
3. Interpret each hj as an integer ij, with 1 ≤ j ≤ k

SIGNATURE VERIFICATION
Input: message m, signature σ, and Kpub
Output: {true, false}
1. Check if m is in current sequence period
2. Compute the hash h = H(m)

Split h into k piece pieces (h1,h2,…,hk) of length ln t
bits each Interpret each hj as an integer ij, with 1≤ j ≤ k
Compute TNj = ij/(t/d)
Check ij with pairs (i, TN, H(AP))
If index ij already exists,
 check if H(APj) = H(AP)
Else check that each H(APj)≠ H(AP) є TNj

3. Use Merkle tree to verify balls
If (TreeHash(rj, APj) = PTNj
 then output true;
Else output false;

5

length of an 802.15.4/ZigBee packet is maximum 128
bytes. It contains very short payload. In other words, an
802.15.4/ZigBee packet can’t contain too long signature.
It limits our implementation. The signature length of this
mechanism contains “k private balls” and their
authentication paths, i.e.,

SIGSIZE = BALLSIZE * HEIGHT * k

We assume that we have 16 private balls and each

ball length is 2 bytes, and we have 4 public balls. That
means we have 4 small trees, and each tree has Height =
3 and contains 4 leaves. We present it in Figure 7. Thus
the size of signature is 2 * 3 * 4 = 24 (bytes). Although it
doesn’t seem to long, it has taken great proportion of
packet. Get rid of frame header and some extra
information, the length that can be used is turned into
less than 30 bytes.

Figure 7. Implementation settings

This is a critical issue; because the security strength

will be reduced with a shorter signature. The length of
the signature presents a probability which can be
randomly guessed. If we want a higher level of security,
we must increase the length of stamped signature. But on
the other hand, this will result in a shorter payload. So we
need to find a balance between them. Now, please recall
that the probability of forgery is

P = (rk/t)k

It means that the security level will be decreased

when the number of outgoing packets increases.
Applying this formula, our settings of the experiment are
k = 4, t = 16. When we send the packet at first time, P =
(1*4/16)4 = 2-8. And after four signatures are given, the
probability becomes (4*4/16)4 = 1. Unfortunately, it
doesn’t seem very secure. Nonetheless, if we increase
value of t, the length of the signature will be so long such
that it can’t be filled in a single ZigBee payload. As a
result, this is not feasible. In the next section, we’ll start
to implement our mechanism and try to find a solution.

3.1. Hardware description

We select Chipcon CC2420DBK [12] as our

operating platform (Figure 8.). It contains a RF chip,
MCU, 2 buttons, one joystick, a RS-232 port and a
temperature sensor. The MCU used is an AVR Atmega
128L from Atmel. This controller has 128 KB of Flash
program memory, 4KB of SRAM data memory and 4KB
of non-volatile EEPROM data memory. For a sensor
system requirement, it meets the condition.

A JTAG ICE connector is provided for programming
the AVR without using the serial port. The power supply
section contains two voltage regulators: a 3.3 V regulator
for use by the microcontroller and the I/O pins of the
CC2420. So we usually use a DC as our main power. It
also contains 4 LED; we can use these LEDs to debug
easily. There are 2 buttons, one for functionality, and the
other for reset. A joystick offers four directions and one
click for functionalities. With this, we can design more
complex operations. In actual situation, we select one
board as the coordinator, and four boards as end-devices.
And the topology of the network is star.

Figure 8. CC2420DB Demo board [12]

3.2. ZigBee stack IZAP

Institute for information industry (III) has been

developing ZigBee stack for years. We have completed a
ZigBee protocol library corresponding to Zigbee
standard version 1.0. The library we developed is called
III ZigBee Advanced Platform (IZAP) protocol stack. It
passed Zigbee compliant platform (ZCP) certificate in
late 2005. Since IZAP implements the whole ZigBee
spec, it contains basic security. In ZigBee protocol, the
ZigBee coordinator will form a network first, and other
nodes start to join. In the procedure of joining, the

6

coordinator decides if a node is allowed to join or not. If
the coordinator allows this node to join, it will dispatch a
key called “network key” to that node. Only after
receiving network key do the nodes can transmit their
packets. And all transmissions are protected by
AES-CCM*. The sender encrypts transmitting packets
and the receiver decrypts them.

3.3. System Implementation

In the ZigBee spec, it describes a hash function called

MMO hash (Matyas-Meyer-Oseas). It is based on AES
and it’s a block cipher with fixed length 16 bytes. We
also link IZAP library to support more complex
applications.

As we said that before, we only have limited space in
the data payload. To overcome this, we came up a
different approach. We first fragment a single message in
to a number of packets in the sender side. And then, we
reorganize these packets and verify them in a single run.
In the original ZigBee spec, it doesn’t describe how to
fragment packets. But we can refer some methods from
other network protocols. (For example, IEEE 802.3.) We
apply a simple fragment mechanism on the original
protocol. That is to cut original data into several fixed
length packets and to add additional indexes to each of
them. Since we know the probability of forgery is related
to r, t, and k. If we extend t, we will get more high
security. So we reset system parameters. Let each ball
size = 1 bytes, t = 64, k = 4. Then we have four trees that
each tree contains 16 leaves and height = 5. After
changing parameters, the length of signature becomes

SIGSIZE = 1 * 5 * 4 = 20 (bytes)

And probability of forgery becomes

P = (1*4/64)4 = 2-16 (at first time)

We slightly modify original design. The receiver
collects many times and does verifying once. That means
we need a simple authentication path transmitting
scheduler. We transmit private balls and some (not all) of
authentication paths. Please recall that a Merkle hash tree
presents every private ball’s authentication path. Thus,
there are some duplicate authentication paths. For
example, if we send private ball Y1, then it’s
authentication path is H(2,2,Y), H(3,4,Y), H(5,8,Y). If
we send private ball Y2, then it’s authentication path is
H(1,1,Y), H(3,4,Y), H(5,8,Y). Thus H(3,4,Y) and
H(5,8,Y) are duplicate.

Now, we can extend our signature to a higher degree
of security. Typically, we send half of original
authentication paths. And remained authentication paths
will store in a queue and wait for being sent in the next

transmission. Although this results in a longer stamped
signature, we can increases the security level. The
drawback of this approach is that we need to collect all
the verification information. In this case, it is no longer a
one-time signature, and we also need to consider the
issues of time and possible loses of the intermediate
packets.

Now, we try to find a suitable solution for the ZigBee
protocol. Suppose that each ball size l decides the
security strength against a brute-force attack. Although
HORS recommends l = 80, we don’t have enough space
in a single payload to satisfy it. So we select l = 16.
Though it seems very short, we can combine re-keying
scheme to recover this drawback. We list all possible
parameter settings on a table, and try to find a suited
setting. They are presented in table 2. The parameter t
means the numbers of private ball, and k means selected
private ball as described before. The parameter r means
that we sign maximum r times, usually satisfies (rk/t) =
1/2 that presents the security strength decreases by
increasing r. The parameter security level presents the
security strength of this setting. The parameter TH means
each Merkle hash tree height. AP # is the number of
authentication paths of one private ball. SIGSIZE is the
size of the signature. Only with 2 AP means that every
sending and each private ball only contains two
authentication paths. Only with 3 AP has the same
meaning.

We have two constraints of our solution. First, we
don’t want our signature length more than 40 bytes. In
this case, we only send two authentication path (AP) or
three authentication path corresponding to a private ball
on each transmission. If we select k private balls, there
are also 2k or 3k authentication paths. So the size of
signature with 3 ap can be computed as:

2 (bytes) * (1(private ball) + 3(ap)) * k

Second, we wish we have a certain degree security

level at least more than 20, and we want a bigger value r
that we can use this signature more times.

So, finally, we can know that the best setting is t =
1024, k = 4, r = 128, security level = 32, tree height = 9,
original AP # followed a private ball = 8, and we choose
only with 3 AP. By these settings, we get a signature with
32 bytes. But this modified scheme needs to change
slightly. Because every receiver needs to collect enough
authentication paths to verify receiving signatures, they
need more memory space to buffer data and they can’t
deal receiving data immediately. If the sender doesn’t
have any data to send, it also need to send some dummy
data or remained authentication paths to let other nodes
verifying remained signature. In our scheme, original AP
= 8, and each private ball follows only with 3 AP. That
is, at first, the receiver needs at least 3 packets to collect

7

enough AP to verify. By time passing, the receiver needs
fewer and fewer AP to verify.

We can add a re-keying scheme to our mechanism.
After r times transmitting, the sender completes to send
remained authentication paths. Then the sender decides
to change a new key and transmit it to every node.
During updating key, the sender can’t send any broadcast.
The new key also needs to be protected by broadcast
authentication.

3.4. Analysis

In this section, we analyze the degree of security and

the required size of transmitting payload of our choice.
We set a private ball size = 2 bytes (16-bits). So we can
defend 2-16 brute force attack for guessing each private
ball. And the probability of forgery = (rk/t)k, that means
we have p = (4/1024)4 = 2-32, and after 128 sending, it
becomes p = (4*128/1024)4 = 2-4. The security strength
decreases by r increasing. That’s why we need to use
re-keying mechanism.

Table 2. parameters analysis

If we apply this settings we will produce a 32-bytes

signature. As described before, the payload length of
ZigBee packet is 128-bytes. Now we eliminate the
header (about 30-bytes), the additional data (about
20-bytes) for ZigBee security, the signature added
(32-bytes), we only have about 40-bytes left to use for
payload. This is illustrated in Figure 9.

Figure 9. A ZigBee packet structure that applies
our scheme

4. Application

In a ZigBee network, the coordinator (sender) plays

an important role at any time. Imaging a scenario, a
home security system, where the coordinator controls a
security center. And one of its job is to manage other
nodes (receiver) to open or close the door lock. When the
coordinator wants to update all passing password, it can
apply our mechanism to broadcast the message. And
during the updating period, all the nodes which control
door locks don’t let anyone go in until the update
completes.

8

5. Conclusion

In this paper, we adapt the concepts from HORS and

Merkle hash tree. We adjust them to fulfill the secure
requirements of a ZigBee network. In Zigbee, the sizes of
payloads are limited to 80 bytes, so we need to separate
our signature into several parts in order to maintain its
security level. In our mechanism, we send some of the
authentication paths each time, so we need more than one
time to verify a signature. As a consequence, we need
additional queue to store related authentication paths and
related data on the sender and the receivers. On the other
hand, while we lose the advantages of one-time signature,
we can still maintain the security level to an acceptable
degree.

We also use a re-keying scheme in our approach.
After we use r signatures, we change a new key. The
sender should send all the authentication paths left and
broadcast a new key to every node to get a refresh the
network. If other nodes have enough storage, they can
support complex scheme to distinguish which packet
using which key. The original ZigBee spec already has a
basic set of security design. It supports an encryption /
decryption algorithm based on AES computing. Only
nodes joining the network, they get a key to secure all
outgoing and incoming packets. Although it can defend
external attack, it can’t protect malicious attack inside.
However, our approach can enhance the original security
mechanism and resist malicious broadcast messages from
an internal invader or a compromised node.

There are several choices of parameters in our
mechanism. All of them are listed in table 2. These
parameters can influence security level and signature
length. We try to find a suitable setting for ZigBee and
finally we choose set # 17. Of course, the settings can be
adjusted anytime to suit a real environment. Just
remember that changing these settings will result in a
different security level and may shorten the length of a
data payload in advance.

6. Acknowledgements

This work is a result of the collaboration between

Networks and Multimedia Institute at Institute for
Information Industry and Distributed System and
Network Security Laboratory at National Chiao Tung
University. The author would also like to thank the
support of the Advanced Mobile Context Aware
Application & Service Technology Development Project
of Institute for Information Industry and sponsored by
MOEA, R.O.C.

7. References

[1] ZigBee Alliance, “ZigBee Document 053474r07, Version
1.1”, September 5, 2005

[2] Edgar H. Callaway, Jr., “Wireless Sensor Networks:
Architectures and Protocols”, AUERBACH PUBLICATIONS,
2003

[3] ZigBee Alliance, “ZigBee Document 053474r07, Version
1.1”, September 5, 2005, Annex A

[4] Leonid Reyzin, Natan Reyzin, “Better than BiBa: Short
One-time Signatures with Fast Signing and Verifying”, April
30, 2002

[5] Stefaan SeyS, “Power Consumption Evaluation of Efficient
Digital Signature Schemes for Low Power Devices”, IEEE
International Conference on Wireless and Mobile Computing,
Networking and Communications (WIMOB), August 23, 2005

[6] Kemal Bicakci, Gene Tsudik, Brian Tung, “How to
construct optimal one-time signatures”, Available at
www.ElsevierComputerScience.com, April 24, 2003

[7] Adrian Perrig, “The BiBa one-time signature and broadcast
authentication protocol”. In Eighth ACM Conference on
Computer and Communication Security, pages 28-37. ACM,
November 5-8, 2001.

[8] Ralph C. Merkle, “A Digital Signature Based on a
Conventional Encryption Function”, Advances in Cryptology –
CRYPTO'87, volume 293 of Lecture Notes in Computer
Science, Springer Verlag, 1987. , pp 369-378

[9] Ralph C. Merkle, “A Certified Digital Signature”, Advances
in Cryptology – CRYPTO'89, volume 435 of Lecture Notes in
Computer Science, Springer Verlag, 1990. , pp 218-238

[10] Ralph C. Merkle, “ Protocols for public key
cryptosystems＂, In Proceedings of the IEEE Symposium on
Research in Security and Privacy, Apr. 1980. , pp. 122–134

[11] Shang-Ming Chang, Shiuhpyng Shieh, Warren W. Lin,
Chih-Ming Hsieh, “An Efficient Broadcast Authentication
Scheme in Wireless Sensor Networks”

[12] CC2420DBK Quick_Start_1_0 (http://www.chipcon.com/)

